A major recombination hotspot in the XqYq pseudoautosomal region gives new insight into processing of human gene conversion events.

نویسندگان

  • Shriparna Sarbajna
  • Matthew Denniff
  • Alec J Jeffreys
  • Rita Neumann
  • María Soler Artigas
  • Amelia Veselis
  • Celia A May
چکیده

Recombination plays a fundamental role in meiosis. Non-exchange gene conversion (non-crossover, NCO) may facilitate homologue pairing, while reciprocal crossover (CO) physically connects homologues so they orientate appropriately on the meiotic spindle. In males, X-Y homologous pairing and exchange occurs within the two pseudoautosomal regions (PARs) together comprising <5% of the human sex chromosomes. Successful meiosis depends on an obligatory CO within PAR1, while the nature and role of exchange within PAR2 is unclear. Here, we describe the identification and characterization of a typical ~1 kb wide recombination hotspot within PAR2. We find that both COs and NCOs are strongly modulated in trans by the presumed chromatin remodelling protein PRDM9, and in cis by a single nucleotide polymorphism (SNP) located at the hotspot centre that appears to influence recombination initiation and which causes biased gene conversion in SNP heterozygotes. This, the largest survey to date of human NCOs reveals for the first time substantial inter-individual variation in the NCO:CO ratio. Although the extent of biased transmission at the central marker in COs is similar across men, it is highly variable among NCO recombinants. This suggests that cis-effects are mediated not only through recombination initiation frequencies varying between haplotypes but also through subsequent processing, with the potential to significantly intensify meiotic drive of hotspot-suppressing alleles. The NCO:CO ratio and extent of transmission distortion among NCOs appear to be inter-related, suggesting the existence of two NCO pathways in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot.

Little is known about the factors that influence the frequency and distribution of meiotic recombination events within human crossover hotspots. We now describe the detailed analysis of sperm recombination in the NID1 hotspot. Like the neighbouring MS32 hotspot, the NID1 hotspot is associated with a minisatellite, suggesting that hotspots predispose DNA to tandem repetition. Unlike MS32, crosso...

متن کامل

Stimulation of meiotic recombination in yeast by an ARS element.

In a previous study, meiotic recombination events were monitored in the 22-kb LEU2 to CEN3 region of chromosome III of Saccharomyces cerevisiae. One region (the hotspot) was shown to have an enhanced level of both gene conversion events and reciprocal crossovers, whereas a second region (the coldspot) was shown to have a depressed level of both types of recombination events. In this study we ha...

متن کامل

Recombination in the Human Pseudoautosomal Region PAR1

The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossove...

متن کامل

The Eutherian Pseudoautosomal Region.

The pseudoautosomal region (PAR) is a unique segment of sequence homology between differentiated sex chromosomes where recombination occurs during meiosis. Molecular and functional properties of the PAR are distinctive from the autosomes and the remaining regions of the sex chromosomes. These include a higher rate of recombination than genome average, bias towards GC-substitutions and increased...

متن کامل

Significant positive correlation between the recombination rate and GC content in the human pseudoautosomal region.

This paper establishes that recombination drives the evolution of GC content in a significant way. Because the human P-arm pseudoautosomal region (PAR1) has been shown to have a high recombination rate, at least 20-fold more frequent than the genomic average of approximately 1 cM/Mb, this region provides an ideal system to study the role of recombination in the evolution of base composition. Ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2012